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Introduction
This research sought out to determine a method for
finding an optimal anti-windup gain for a convex
system. The combination of two past works led to this
method. The first publication, Static Anti-Windup
Design, used a linear matrix inequality, or LMI, to
determine an anti-windup gain for a nonlinear system.
This LMI guaranteed regional stability paired with
performance. The second paper, Saddle Point
Convergence of Constrained Primal-Dual Dynamics,
showed how a convex primal dual system can be
implemented with control. This research bridges the
gap between these works.

Conclusion
An application that showcases the design is solving a
quadratic program. These problems have extensive
applications in control and the speed at which the
quadratic program is solved is a vital component to
performance. These involve the minimization of a
multivariable expression as well as constraints. A
systems ability to rapidly solve a quadratic program is
indicative of its ability to perform control, so if the
proposed anti-windup gain solves quadratic programs,
it will also have control applications.

Computational Example
A quadratic programming problem:

minimize  !" (4x1
2 + 10x2

2 +3x3
2 -12x1x2 – 6x2x3 + 2x1x3)

subject to x1 + 0.8x2 + 1.2x3 ≥ 10

Transforming this into a primal dual dynamic and
simulating yields the following solution trajecories with
and without antiwindup augmentation.

Anti-Windup Gain Computation
Below is the reduced LMI for convex systems. This LMI contains LMI variables, parameters derived from the system, and anti-
windup gain. This LMI is solved using MATLAB, and the result is used in simulation.

Future Work
Further work with this model would include
implementing the model on a physical device. One
possible candidate for the device could be the Quasar 2
DOF Helicopter. This system models air or underwater
vehicles and would provide a reliable model to test all
three controllers.

Methodology
The approach adopted here is to reformulate the
primal-dual dynamics as a combination of three
parts:
• An optimization plant corresponding to the

gradient descent flow
• An optimization controller corresponding to the

gradient ascent flow and
• An antiwindup augmentation that allows for

affecting the behavior of the solver to a desired
performance level.

The main task then is the determination of an
appropriate antiwindup gain that encapsulates such
performance specification.

The ensuing dynamical solver takes the form:
�̇� = −𝛻𝑓 𝑥 + 𝐵𝑣; 𝑦 = 𝐶𝑥

�̇� = 𝐴𝑤 + 𝐵 𝑦 − 𝑒 + 𝜉; 𝜆 = 𝐶𝑤 + 𝐷 𝑦 − 𝑒

𝑢 = −𝜆; 𝑣 = 𝜙 𝑢 ; 𝜉 = 𝑓 𝑥 = 𝐾# (𝑢 − 𝑣)

Where 𝐾# is the antiwndup gain to be determined.
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Convex Optimization Problem
We consider convex optimization problem of the form:

min
$
𝑓(𝑥)

Subject to 𝑔 𝑥 = 𝐶𝑥 − 𝑒 ≤ 0

• Convex objective function f(x)
• Linear inequality constraints g(x)≤ 0

Classical Primal Dual Dynamics
Classical primal dual dynamic for solving convex
optimization problems comprises both gradient descent
flow in the primal variable 𝑥 and gradient ascent flow in
the Lagrangian (dual)variable 𝜆 towards the optimal
solution.

�̇� = −𝛻𝑓 𝑥 + 𝐶%𝜆
�̇� = 𝐶𝑥 − 𝑒
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