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Abstract

We are studying the Iterated LLL algorithm (or ILLL algorithm) due toW. Bosma and I. Smeets. For

a given list of irrational numbers, the ILLL algorithm returns a series of efficient rational approxima-

tions to the numbers. The central aim of our on-going project is to develop a new version of ILLL

that will incorporate the continued fraction algorithm for storing real numbers for preprocessing.

Since the continued fraction algorithm is optimal, we expect that our planned implementation will

give us new insight into the overall performance of the ILLL algorithm.

Introduction

A very efficient solution to the problem of approximating a single real number by rationals is the

continued fraction algorithm; see, e.g., [8, Chapter 1, Section 5]. The problem of simultaneous

Diophantine approximation [5] is about approximating two or more real numbers by rational

numbers having the same denominator. The problem for a single real number is solved by the

continued fraction algorithm [8]. For simultaneous Diophantine approximation, however, the

problem is much harder.

While many algorithms have been proposed for simultaneous Diophantine approximation, there

still does not exist one that is a perfect analogue of the continued fraction algorithm; see, e.g.,

[4] for a description of such algorithms. Our project studies the LLL and ILLL algorithm for simul-

taneous Diophantine approximation, which is a fast and reasonably efficient solution.

The ILLLalgorithm [2] builds on awell-known lattice basis reduction algorithm due toA. K. Lenstra,

H. W. Lenstra and L. Lovàsz, referred to here as the (classical) LLL algorithm, which was shown to

be applicable to the problem of simultaneous Diophantine approximation [7]. The advantage of

the ILLL algorithm over the classical version is that it finds several increasingly accurate approx-

imations per application, and with prescribed quality. Following the implementations of LLL in

[3, 6], we aim to develop a version of ILLL which incorporates the continued fraction algorithm

for preprocessing.
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Materials and Methods

Dirichlet's Approximation Theorem [8, Theorem 1A, p. 27]: If α1, . . . , αn are n real numbers and
at least one of them is irrational, then there are infinitely many n-tuples p1

q , . . . , pn
q with∣∣∣∣αj −

pj

q

∣∣∣∣ <
1

q1+1/n
.

For the case n = 1, the rational numbers generated via the continued fraction algorithm, which
are called convergents, are the best solutions of Dirichlet's Approximation Theorem [8, Lemma

4D, pp. 14 -- 15]; see also, e.g., the optimal continued fraction algorithm [1]. The following

theorem gives a solution for the case n > 1 that is based on the LLL algorithm.
Theorem 1 [7, Proposition 1.39, p. 525]: Given rational numbers α1, α2, . . . , αn and ε satisfying
0 < ε < 1, there exists a polynomial-time algorithm which finds integers q ∈ N and p1, . . . , pn ∈ Z
such that ∣∣∣∣xj −

pj

q

∣∣∣∣ ≤ ε

q
, and 1 ≤ q ≤ 2

n(n+1)
4 ε−n

for j = 1, . . . , n.

The ILLL Algorithm:

A higher-dimensional version of the algorithm provided by Theorem 1 is presented in [2]. It works

by computing a series of increasingly good approximations with prescribed quality by iterating

LLL, and is appropriately called the iterated LLL algorithm.

Our project focuses on the application of ILLL to the case n = 1 from [2, Section 5]. Specifically,
we study the comparisons of the distributions of Dirichlet coefficients (defined below) compared

with those from the optimal continued fraction algorithm.

Definition 1: The Dirichlet coefficient of each approximation in Theorem 1 is

q1/n‖qα1 + · · · + qαn‖,

where ‖x‖ denotes the distance from x to the nearest integer.

MainWork

Figure: 1 Distributions for (left) N = 100 trials and (right) N = 200 trials.

Figure 1 above shows two plots of distributions of the Dirichlet coefficients up to each value on

the horizontal axis for large numbers of approximations. It's possible that when running ILLL on

some value, there could be duplicate approximations. When the duplicate approximations are

filtered out of the data set, the distribution of Dirichlet coefficients is almost exactly that of the

optimal continued fraction algorithm.

MainWork (cont.)

Figure: 2

Figure 2 above shows the same distributions as Figure 1 obtained by [2]. Note that the param-

eter d refers to a parameter of ILLL, which can be interpreted as the rate in which the precision
increases during the iteration of LLL on each of the N trials.

Figure 2 implies that when including duplicate approximations, ILLL yields an approximation with

Dirichlet coefficient up to any number on the horizontal axis more often than the optimal con-

tinued fraction algorithm. This is due to the increased amount of Dirichlet coefficients being

considered, however many repeated. This would suggest that with larger numbers of trials, the

plots in Figure 1 should look more similar to the results obtained by [2] shown in Figure 2. Our

results shown in Figure 1 would certainly reflect this hypothesis, since the plot on the right in

Figure 1 shows distributions closer to Figure 2 than the one on the left.

Future Plans

We have put together a software library which includes, but is not limited to, the original contin-

ued fraction algorithm, the original LLL algorithm and the ILLL algorithm. Since the software is

ultimately run on a machine that will chop decimal digits just as when writing a number down on

paper, there are different perspectives to consider for precision. For instance, when attempting

to approximate the number
√

2 on a machine using the ILLL algorithm, the machine first has to
approximate

√
2, ultimately affecting the accuracy before the algorithm even begins. The results

obtained in Figures 1 and 2 were initially approximated using dyadic rationalsa.

Our current goal is to add to our software library, an implementation of the ILLL algorithm where

the initial approximation is obtained using convergents of the original continued fraction algo-

rithm. With the new implementation of ILLL, we can generate similar distributions to Figures 1

and 2 and compare results. Through comparison of results we hope to gain more insight in the

overall performance and accuracy of ILLL.

The implementation of LLL in [6], which was for studying roots of nonlattice Dirichlet polynomials,

is similar to ILLL in that it finds a sequence of approximations, except that it makes use of conver-

gents as with the implementation from [3, Chapter 9, Example 9.5]. Hopefully the approximations

found by our future implementation will be comparable to those found in [3, 6].

aA dyadic rational number is a rational number with denominator 2M for some M ∈ N.


