
I. Intellectual Merit

Aquatic organisms use a variety of modes of locomotion to effectively swim around their fluid
environments [17]. Some modes of locomotion, such as those performed by jellyfish, are known
to be much more energy efficient than others [18]. In fact, jellyfish are deemed the most energy-
efficiency swimming animal [6], partly due to the low effort necessary to swim near their maximal
achievable speeds [11]. However, other animals evolved to implore other modes of locomotion,
such as the anguilliform (wave-like) mode like that of fly larvae, worms and eels, and still suc-
cessfully swim, albeit at higher energetic costs [14, 16, 2]. While computational studies provide
a framework to test the efficiency of different locomotive modes, one aspect that is traditionally
dismissed upon calculating energetic costs the is the motion of the surrounding fluid. Moreover,
different modes of locomotion give produce distinct fluid vortex wake patterns (see Figure 1). Fur-
thermore, even among the same modes of locomotion, some animals are more efficient swimmers
than others [2, 11] (see Figure 2).

Figure 1: Vortex wakes of
(a) jellyfish and (b) anguilli-
form swimmers

This suggests an interesting question of what information can be
gained from understanding a swimmer’s vortex wake topology. That is,
given a particular vortex wake, can we predict the efficiency of a swim-
mer? Some methods have been proposed to extract performance data
from vortex wakes [7, 8], but it is a non-trivial endeavor [9]. We pro-
pose to use techniques from machine learning, i.e., convolutional neural
networks, to help us classify vortex wakes and depict salient features
indicative of performance. Others have used neural networks to clas-
sify particular wake patterns from oscillating airfoils or fish-like swim-
mers [5, 10], but have not assessed classification in terms of perfor-
mance. From my lab’s previous locomotion endeavors [12, 3, 2, 11, 1],
we have produced over 25,000 fluid dynamics simulations for variety
of swimmers, and thus over 25,000 simulations in which we can sam-
ple for training data for our neural network model. The first goal
of this project will be classifying wakes of different modes of loco-
motion, i.e., jet propsulive (jellyfish-like) or anguilliform (worm-like)
modes. The second goal will be to classify vortex wakes by energetic metrics (cost of trans-
port) to identify wake topologies and features that lead towards more efficient swimming. We will
make use of TCNJ’s high-performance computing cluster to train, tune, and run our models [15].

Figure 2: Anguilliform vortex wakes & where they fall within the performance space.

The importance of
wake structure and vor-
tex interactions are not
limited to solely lo-
comotion processes; a
deeper understanding of
their governing princi-
ples may also be ben-
eficial for inspiring in-
novative designs for
biomimetic devices, such as vertical axis wind turbine (VAWT) farm configurations [19] or flow
sensors in aquatic robotics based on vortex induced vibrations [4, 13].



II. Role of Student and Mentor
As a faculty research mentor I believe my primary goal is to ensure a positive, supportive

research experience for my students. On that note, I also try to construct a project that is mutually
beneficial for my research program as well as ideal for a student to refine or develop new skills for
their own career aspirations. In previous conversations with STUDENT, they exhibited interest in
furthering their knowledge of machine learning and python programming via an interdisciplinary
project. This project will satisfy those desires as well as complement and leverage their existing
knowledge as a computer science major.

During Weeks 1 to 3, I will work with them to guide them through the foundational aspects of
image classification using neural networks in python. To alleviate the learning curve in this pro-
cess, we can use resources that I previously contributed to in Google’s Applied Machine Learning
Intensive program as a guide. During this time we will also discuss ethical implications of such
machine learning algorithms as well as how to assess what a successful model, e.g., calculating the
confusion matrix to interpret true and false positives and negatives rates and subsequent accuracy
and precision metrics. During this time I will also be compiling all of the locomotion images and
associated performance data from my lab’s previous research endeavors.

In Weeks 4 and 5, they will use these images and data to construct and train their own clas-
sification neural network model. This model will be able to distinguish which vortex wakes are
produced by a jellyfish or worm-like swimmer. I will provide different training data sets for them
to use in order to practice tuning the model and explore its efficacy. After this in Weeks 6 and
7, I will provide two more data sets - one for jellyfish and one for worm-like swimming. Rather
than classify who is who, here they will construct a model to assess swimming efficiency. That
is, each image will come with a tag of its cost of transport (efficiency), and thus can be classified
accordingly.

III. Broader Impacts
This research will provide new insight into assessing swimming performance via salient flow

features. Specifically for the student this opportunity will provide further exploration into machine
learning techniques in an interdisciplinary research environment. For me, this will propel my
bioinspired research program forward and contribute new tools for future lab members. On that
note, my lab has a history of developing popular open-source fluids software for the scientific
community and I suspect that this code will also benefit many others, particularly students. I
expect that the data collected will translate into at least one peer-reviewed journal article. My
target journals are Physics of Fluids and Bioinspiration & Biomimetics, the latter of which I have
previously published in. I also plan to have them present a poster at SACNAS, and myself, present
at the Society of Integrative and Comparative Biology in 2022. Furthermore, it will foster increased
collaborations between departments at TCNJ, i.e., mathematics and computer science.

https://github.com/google/applied-machine-learning-intensive
https://github.com/google/applied-machine-learning-intensive
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